饶玉春,男,1984年生,博士/博士后,教授,博士生导师,浙江省发明协会理事、植物遗传专业委员会副主任,中国作物学会会员,浙江省遗传学会会员。2011年7月至今在浙江师范大学化学与尊龙凯时平台入口工作,主要从事水稻等禾谷类作物的分子遗传学研究,以第一作者或者通讯作者身份在Science Bulletin, New Phytologist, Plant Physiology, Plant Biotechnology Journal, The Plant Journal, Journal of Integrative Plant Biology, Rice, Journal of Agricultural and Food Chemistry等权威期刊上发表论文80余篇, 以合作者身份在Nature Plants, Proc Natl Acad Sci U S A., Molecular Plant , New Phytologist , Journal of Experimental Botany等杂志上发表论文30余篇。主持转基因国家重大专项子课题、国家自然科学基金、浙江省自然科学基金、中国博士后基金、浙江省教育厅项目、水稻生物学国家重点实验室开放项目、浙江省“重中之重”学科开放基金等科研项目。 授权国家发明专利16件(第一完成人)。担任《Rice》、 《Breeding Science》、 《Euphytica》 、《Journal of agriculture and food chemistry》、 《plant growth and regulation》、 《Rice Science》 、《植物学报》、《中国水稻科学》等刊物通讯审稿人。2015年晋升副教授,2020年晋升教授,2021年聘为“双龙学者”特聘教授。入选2017年“浙江省科协育才工程”,结题优秀;入选浙师大“学术名师”(2020)。
主编教材《普通生物学实验》、《植物分子生物学技术及其应用》(1,2两版)等3部,参编专著《水稻分子育种技术指南》1部。主讲《遗传学》、《遗传学实验》、《基因工程》、《基因工程实验》、《基因组学》、《表观遗传学》等核心课程。主持浙江省教改项目、浙师大教改项目多项。大学生创新工作室“禾作创新工作室”负责人。指导学生参加全国及省内的各种大型赛事并多次并获奖,包括中国“互联网+”大学生创新创业大赛国赛金奖、全国“挑战杯”大学生课外学术科技作品竞赛省赛一等奖、中国“挑战杯”大学生创业计划竞赛国赛铜奖(和省赛特等奖)、全国大学生生命科学创新创业大赛一等奖、浙江省第大学生职业生涯规划与创业大赛一等奖。 指导国家级大学生创新创业训练计划项目、浙江省大学生科技创新活动计划暨新苗人才计划项目等各类学生科研项目多项。指导研究生、本科生毕业论文70余人次,其中多人获得浙江省优秀硕士论文、浙江省优秀毕业生等称号,受到广大学生的一致好评。个人获得“全国大学生生命科学创新创业大赛优秀指导教师”、 “浙江省优秀硕士论文指导老师”、 “浙江省优秀发明人才”、 “浙江省大学生生命科学竞赛优秀指导老师”、 “浙江省大学生职业生涯规划与创业大赛优秀指导教师”, 浙江师范大学“优秀硕士学位论文指导老师”、“优秀班主任”、“ 我最喜爱的研究生导师”、“教学质量优秀奖”、“耿儿奖教金”等荣誉。
代表性学术论文
1. Quantitative trait locus mapping and candidate gene analysis for salt tolerance at bud stage in rice. Frontiers in plant science,2023,13:1041081.(通讯作者, SCI二区top, IF=5.75)
2. A rice XANTHINE DEHYDROGENASE gene regulates leaf senescence and response to abiotic stresses. The Crop Journal. 2022,10:310-322.(通讯作者, SCI一区top, IF=4.41)
3. UDP-N-acetylglucosamine pyrophosphorylase enhances rice survival at high temperature. New Phytologist, 2022, 233:344-359.(通讯作者, SCI一区top, IF=10.15)
4. Advance of clustered regularly interspaced short palindromic repeats-Cas9 system and its application in crop improvement, Frontiers in plant science,2022, 13:839001.(通讯作者兼第一作者, SCI二区top, IF=5.75)
5. A base substitution in OsphyC disturbs its interaction with OsphyB and affects flowering time and chlorophyii synthesis in rice. BMC Plant Biology,2022,22:612 (共同一作, SCI二区, IF=4.21)
6. Genetic Engineering Technologies for Improving Crop Yield and Quality. Agronomy, 2022,12(4),759.(通讯作者, SCI二区, IF=3.41)
7. OsSPL88 encodes a Cullin protein that regulates rice growth and development. Frontiers in Genetics, 2022(通讯作者, SCI二区, IF=4.6)
8. SPL36 Encodes a Receptor-like Protein Kinase that Regulates Programmed Cell Death and Defense Responses in Rice. Rice, 2021, 14:34.(通讯作者兼第一作者,SCI一区, IF=4.78)
9. Identification and characterization of short crown root 8, a temperature-sensitive mutant associated with crown root development in Rice. International Journal of Molecular Sciences, 2021, 22, 9868.(通讯作者, SCI二区top, IF=5.92)
10. Fine mapping and candidate gene analysis of leaf tip premature senescence and Dwarf Mutant dls 1 in Rice. Plant Growth Regulation, 2021, 94:275-285.(通讯作者兼第一作者,SCI三区, IF=3.41)
11. The C2H2 zinc-finger protein lacking rudimentary GLUME 1 regulatesspikelet development in rice. Science Bulletin, 2020,65,753-764.(通讯作者, SCI一区top, IF=11.78)
12. A Method of Effectively Overcoming Tight Functional Linkage Between Genes in Rice by the CRISPR/Cas9 System,Rice Science, 2020,27(3):180-183.(通讯作者, SCI二区, IF=3.33)
13. MORE FLORET1 Encodes a MYB transcription factor that regulates spikelet development in rice.Plant Physiology, 2020,184:251-265. ( 共同一作,SCI二区top, IF=8.34)
14.PE 1, Encoding Heme Oxygenase 1, Impacts Heading Date and Chloroplast Development in Rice (Oryza sativa L.). Journal of Agricultural and Food Chemistry, 2019, 67, 7249-7257.(通讯作者兼第一作者,SCI一区top, IF=5.28)
15. Transcriptome analysis of Xanthomonas oryzae pv. oryzicola exposed to H2O2 reveals horizontal gene transfer contributes to its oxidative stress response.PLoS ONE, 2019, 14(10):e0218844.(通讯作者,SCI三区, IF=2.74)
16. ‘Two-floret spikelet’ as a novel resource has the potential to increase rice yield. Plant Biotechnology Journal, 2018, 16:351-353. (共同一作,SCI二区top, IF=6.84)
17. Rational design of high-yield and superior-quality rice. Nature Plants, 2017, 3: 17031. (第三作者,SCI一区top, IF=15.79)
18.Multi-tillering dwarf1, a new allele of brittle culm12, affects plant height and tiller in rice. Science Bulletin, 2016, 61(23):1810-1817.(通讯作者,SCI三区, IF=2.28)
19. Regulatory role of OsMADS34 in the determination of glumes fate, grain yield, and quality in rice. Frontiers in plant science, 2016.7:01853. (共同一作,SCI二区, IF=4.29)
20. Fine Mapping Identifies a New QTL for Brown Rice Rate in Rice (Oryza Sativa L.). Rice, 2016, 9:4. (共同一作,SCI一区top, IF=3.74)
21. The pleiotropic ABNRMAL FLOWER AND DWARF1 affects plant height, floral development and grain yield in rice. Journal of Integrative Plant Biology,2016,58(6):529-539. (共同一作,SCI二区, IF=3.96)
22. Characterization and cloning of SMALL GRAIN4, a novel DWARF11 allele that affects brassinosteroid biosynthesis in rice. Science Bulletin,2015, 60 (10) :905-915. (共同一作,SCI三区, IF=1.79)
23. EARLY SENESCENCE 1 Encodes a SCAR-like protein2 that affects water Loss in Rice.
Plant Physiology. 2015, 169:1225-1239.(第一作者,SCI一区top, IF=6.28)
24.SMALL GRAIN1, which encodes a mitogen-activated protein kinase4(MKK4), influences grain size in rice. ThePlant Journal. 2014, 77(4):547-557.(共同一作,SCI二区top, IF=5.97)
25. Recent progress on molecular breeding of rice in china. Plant Cell Reports, 2014, 33:551-564.(第一作者,SCI三区, IF=3.07)
26. Genetic analysis of sugar-related traits in rice grain. South African Journal of Botany, 2014, 93:137-141. (共同一作,SCI四区, IF=0.99)
27. Characterization and cloning of a brittle culm mutant (bc88) in rice (Oryza sativa L.). Chinese Science Bulletin,2013, 58(24):3000-3006.(通讯作者兼第一作者,SCI三区, IF=1.37)
28. Map-based cloning proves, qGC6, a major QTL for gel consistency of japonica/indica cross,was responded by Waxy in rice (Oryza sativa L.). Theoretical and Applied Genetics,2011, 123: 859-867.(共同一作,SCI三区, IF=3.3)
29. Characterization and fine mapping of an early senescence mutant (es-t) in Rice (Oryza sativa L.). Chinese Science Bulletin,2011, 56(23): 2437-2433. (共同一作,SCI三区, IF=1.32)
30. Genetic Analysis of Traits Related to Leaf Sheath in Rice (Oryza sativa L.). Rice Genomics and Genetics, 2011, 12(3):21-30. (共同一作)
31. Genetic analysis of leaf folder resistance in rice. Journal of Genetics & Genomics, 2010, 37 (5): 325-331.(第一作者, IF=1.49)
32. Characterization and fine mapping of non-panicle mutant (nop) in rice. Rice Science, 2009, 16(3): 165-172. (共同一作)
33. DMT1编码一个丝氨酸/半胱氨酸蛋白酶调控水稻分蘖并参与干旱胁迫响应.中国科学:生命科学,2023,53(4):529-542.(通讯作者)
34.水稻籽粒维生素E QTL挖掘及候选基因分析.植物学报,2022,57(2): 157-170.(通讯作者)
35. 水稻黄绿叶调控基因YGL18的克隆与功能解析.植物学报,2022,57(3): 276-287.(通讯作者)
36.水稻剑叶形态QTL定位及候选基因分析.中国科学:生命科学,2021,51(5):567-578.(通讯作者)
37. 水稻叶片水势的QTL定位与候选基因分析.植物学报,2021,56(3): 275-283.(通讯作者)
38. 水稻叶片衰老基因 LPS1的克隆与功能研究.中国水稻科学,2021, 35(5):427-438(通讯作者)
39. 水稻籽粒镉积累QTL定位及候选基因分析.植物学报,2021,56(1): 25-32.(通讯作者)
40. 水稻籽粒砷、铜、铁、汞、锌含量QTL挖掘及候选基因分析.中国科学:生命科学,2020,50(6):623-632.(通讯作者)
41. 水稻早衰突变体LS-es1的基因定位及候选基因分析.植物学报,2019,54(5): 606-619.(通讯作者)
42.水稻类病变突变体spl-3t的精细定位与候选基因分析.中国科学:生命科学,2018,48(10):1101-1114.(通讯作者)
43.水稻矮化小穗突变d18新等位基因的发现及生理功能分析.中国科学:生命科学,2018,48(6):692-704.(通讯作者)
44.水稻耐金属离子胁迫的QTL分析.中国水稻科学,2018,32(1):23-34.(通讯作者)
45.水稻叶片早衰成因及分子机理研究进展.植物学报,2017, 52(1):102-112.(通讯作者)
46.水稻ES1参与生物钟基因表达调控以及逆境胁迫响应.植物学报, 2016, 51(6):743-756.(通讯作者)
47.水稻纤维素合酶催化亚基的编码基因BC88 的表达分析.中国水稻科学,2015, 29(2):126-134.(通讯作者)
热忱欢迎勤于思考、踏实肯干、主动作为的热血青年报考研究生,共谋发展!
有意者请将个人简历发至ryc@zjnu.cn或ryc1984@163.com。地址:浙江省金华市迎宾大道#688,浙江师范大学,化学与尊龙凯时平台入口10-319室,321004。